
IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Turing Computability of Fourier Transforms of
Bandlimited and Discrete Signals

Holger Boche, Fellow, IEEE, and Ullrich J. Mönich, Senior Member, IEEE

Abstract—The Fourier transform is an important operation
in signal processing. However, its exact computation on digi-
tal computers can be problematic. In this paper we consider
the computability of the Fourier transform and the discrete-
time Fourier transform (DTFT). We construct a computable
bandlimited absolutely integrable signal that has a continuous
Fourier transform, which is, however, not Turing computable.
Further, we also construct a computable sequence such that the
DTFT is not Turing computable. Turing computability models
what is theoretically implementable on a digital computer. Hence,
our result shows that the Fourier transform of certain signals
cannot be computed on digital hardware of any kind, including
CPUs, FPGAs, and DSPs. This also implies that there is no
symmetry between the time and frequency domain with respect
to computability. Therefore, numerical approaches which employ
the frequency domain representation of a signal (like calculating
the convolution by performing a multiplication in the frequency
domain) can be problematic. Interestingly, an idealized analog
machine can compute the Fourier transform. However, it is
unclear whether and how this theoretical superiority of the analog
machine can be translated into practice. Further, we show that
it is not possible to find an algorithm that can always decide for
a given signal whether the Fourier transform is computable or
not.

Index Terms—Fourier transform, discrete-time Fourier trans-
form, algorithmic decision, Turing computability, frequency do-
main

I. INTRODUCTION

THE Fourier transform and the discrete-time Fourier trans-
form are two important operations in signal processing

[2]–[5]. Using those transforms we can interpret signals in
terms of their frequency composition. A useful property of
the Fourier transform is that it transforms a convolution in the
time domain into a multiplication in the frequency domain.
For this reason, the output of a linear time-invariant (LTI)
system can be easily determined in the frequency domain by
multiplying the system input with the transfer function of the
LTI system.

For practical applications, it is essential that we can com-
pute the Fourier transform on a digital computer [6]. But
even though theorems like the convolution theorem play an

This work was supported by the Gottfried Wilhelm Leibniz Programme of
the German Research Foundation (DFG) under grant BO 1734/20-1 and the
DFG under Germany’s Excellence Strategy – EXC-2111 – 390814868.

The material in this paper was presented in part at the 2019 IEEE
International Symposium on Information Theory [1].

Holger Boche is with the Technische Universität München, Lehrstuhl für
Theoretische Informationstechnik, 80290 Munich, Germany, and the Munich
Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799
Munich, Germany. e-mail: boche@tum.de. Ullrich J. Mönich is with the Tech-
nische Universität München, Lehrstuhl für Theoretische Informationstechnik,
80290 Munich, Germany. e-mail: moenich@tum.de.

important role in signal processing [5], the computability of
the Fourier transform has not gotten much attention. In this
paper we will study the computability of the Fourier transform
and the discrete-time Fourier transform (DTFT). The proper
framework to treat this question is Turing computability. A
Turing machine is an abstract device that manipulates symbols
on a strip of tape according to certain rules [7]–[10]. Although
the concept is very simple, a Turing machine is capable of
simulating any given algorithm. A Turing machine has no
limitations in terms of memory or computing time, and hence
provides a theoretical model that describes the fundamental
limits of any practically realizable digital computer. This im-
plies that anything that is not computable on a Turing machine,
cannot be computed on any digital hardware, including CPUs,
FPGAs, and DSPs.

We will show that there are signals for which no Turing
machine exists, and hence no algorithm that can compute the
Fourier transform. The same holds true for the discrete-time
Fourier transform (DTFT).

As for the Fourier transform, we will construct an absolutely
integrable bandlimited signal f∗, which itself is computable
as a continuous signal, such that its Fourier transform f̂∗ is
continuous but not Turing computable, because f̂∗(0) is not
computable. The signal f∗ has further interesting properties.
The Lp(R)-norms of f∗ are computable for all computable
1 < p ≤ ∞, and, in particular, the energy, i.e., the L2(R)-
norm is computable. We will give a precise definition of what
we mean by “computable” in Section III.

In [9, p. 110, Th. 4] a positive result about the computability
of the Fourier transform was given for certain Lp(R) spaces.
To obtain this result, the fact was used that the Fourier
transform is a bounded operator from Lp(R) into Lq(R)
if p ≤ 2 and q is the conjugate index of p, satisfying
1/p + 1/q = 1. Further, Type-2 computability of the Fourier
transform for Lp(R) was studied in [11]. In [12], without a
proof, a computable continuous signal was stated that has a
non-computable Fourier transform. The construction and the
properties of the signal f∗ in the present paper are different
from the signal given in [12]. In particular, f∗ is bandlimited,
which enables us to use Shannon’s theory of sampling series
to compute its Lp-norms. Further, our approach immediately
gives us a finite Shannon sampling series approximation for
f∗, with effective control of the approximation error. Such an
effective control of the approximation error is not possible
in the frequency domain, i.e., for the approximation of f̂∗,
because f̂∗(0) is not computable.

As for the DTFT, we will construct a sequence that is
computable in `p, 1 < p < ∞, such that its DTFT is not

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 2

computable on all dyadic grids. Although the convergence
behavior of the Fourier series is important and a well-studied
topic in classical analysis [13], questions of computability have
not caught much attention. The convergence of Fourier series
for computable Lebesgue integrable signals was studied in
[14], and it has been shown that the set of L1-computable
signals, whose Fourier series diverges almost everywhere, is
big in a certain sense. In [12] a computable signal f(t) was
given, for which the Fourier series converges uniformly, but
the convergence is not effective for t = 0. This result does not
imply ours, because it only shows that the Fourier series of f
does not converge effectively. We instead show that the DTFT
signal itself is not computable, no matter what procedure is
used to calculate it.

Further, we investigate the problem whether it is possible
to find an algorithm that can decide for a given signal if its
Fourier transform is computable. We will show that such an
algorithm cannot exist. This fact has consequences, e.g., for
computer aided control system design (CAD), where such an
algorithm would be necessary in order that problematic signals
be avoided.

Other works that treat computability in the context of
signal processing are [15], [16]. In [15] downsampling and
the bandlimited interpolation have been studied with respect
to computability, and in [16] the decidability of the uniform
convergence of the Fourier series was analyzed.

II. NOTATION

By `p(Z), 1 ≤ p < ∞, we denote the usual spaces of
p-th power summable sequences x = {x(k)}k∈Z with the
norm ‖x‖`p = (

∑∞
k=−∞|x(k)|p)1/p. `p+(Z) denotes the set

of sequences {x(k)}k∈Z in `p(Z) that vanish for k < 0, i.e.,
satisfy x(k) = 0 for all k < 0.

In this paper we will use both the terms function and signal
interchangeably. By C we denote the space of all continuous
functions on R that vanish at infinity, equipped with the norm
‖f‖C = maxt∈R|f(t)|. For Ω ⊆ R, let Lp(Ω), 1 ≤ p < ∞,
be the space of all measurable p-th power Lebesgue integrable
functions on Ω with the usual norm ‖ · ‖p, and L∞(Ω) the
space of all functions for which the essential supremum norm
‖ · ‖∞ is finite. For 0 < σ < ∞ and 1 ≤ p ≤ ∞, we denote
by Bpσ the Bernstein space of all functions of exponential type
at most σ, whose restriction to the real line is in Lp(R) [17,
p. 49]. The norm for Bpσ is given by the Lp-norm on the real
line. A function in Bpσ is called bandlimited to σ. B2σ is the
frequently used space of bandlimited functions with bandwidth
σ and finite energy. We have Bpσ ⊂ Brσ for all 1 ≤ p ≤ r ≤ ∞
[17, p. 49, Lemma 6.6]. B∞σ,0 denotes the space of all functions
in B∞σ that vanish at infinity.

By ∂D we denote the boundary of the unit disk, i.e., the
unit circle, and C(∂D) denotes the set of all continuous
functions on ∂D. We equip C(∂D) with the norm ‖f‖C =
maxω∈[0,2π)|f(eiω)|. The Wiener algebra W is the space of
all functions in C(∂D) with an absolutely convergent Fourier
series.

III. COMPUTABILITY

The theory of computability is a well-established field in
computer science [7]–[10], [18]. However, since computability
is not widely known in the signal processing community, we
describe some of the key concepts in this section. For a more
detailed treatment of the topic, see for example [9], [10], [18],
[19].

In order to study the question of computability, we employ
the concept of Turing computability. A Turing machine is
an abstract device that manipulates symbols on a strip of
tape according to certain rules [7], [8], [10], [18]. Despite
their simplicity, Turing machines are capable of simulating
any given algorithm. Further, Turing machines are equivalent
to other concepts of computability, such as those defined by
general recursive functions, Minksy register machines, or λ-
calculus. Since Turing machines have no limitations in terms
of memory or computing time, they provide a theoretical
model that describes the fundamental limits of any practically
realizable digital computer.

It is important to distinguish Turing computability from
complexity theory, another topic in computer science. Com-
plexity theory deals with the question how efficiently a prob-
lem can be solved, and analyzes how the computation time of
a given algorithm scales with the size of the input data. Thus,
the goal of complexity theory is different to the goal in Turing
computability where the fundamental limits of computability
are explored, without consideration of complexity issues. Fur-
ther, complexity theory operates in a discrete and finite setting.
However, in the modeling of many real world problems,
continuous functions are used, e.g., bandlimited functions that
have an infinite duration. In principle, computability theory
can make statements about the computability of such objects.

Alan Turing introduced the concept of a computable real
number in [7], [8]. A sequence of rational numbers {rn}n∈N is
called a computable sequence if there exist recursive functions
a, b, s from N to N such that b(n) 6= 0 for all n ∈ N and

rn = (−1)s(n)
a(n)

b(n)
, n ∈ N.

A recursive function is a function, mapping natural numbers
into natural numbers, that is built of simple computable func-
tions and recursions [20]. Recursive functions are computable
by a Turing machine. A real number x is said to be computable
if there exists a computable sequence of rational numbers
{rn}n∈N and a recursive function ξ : N → N such that
|x− rξ(n)| < 2−n for all n ∈ N. By Rc we denote the set of
computable real numbers and by Cc = Rc + iRc the set of
computable complex numbers. Rc is a field; i.e. finite sums,
differences, products, and quotients of computable numbers
are computable. Note that commonly used constants like e
and π are computable. A non-computable real number was,
for example, constructed in [21].

A sequence {x(k)}k∈Z in `p, p ∈ [1,∞)∩Rc is called com-
putable in `p if: 1) every number x(k), k ∈ Z, is computable,
and 2) there exist a computable sequence {xN}N∈N ⊂ `p,
where each xN has only finitely many non-zero elements, all
of which are computable as real numbers, and a recursive
function ξ : N → N, such that for all n ∈ N we have

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 3

‖x − xξ(n)‖`p ≤ 2−n. By C`p we denote the set of all
sequences that are computable in `p. Similarly, we define
C`p+(Z) as the set of all sequences in `p+(Z) that are com-
putable in `p.

There are several—not equivalent—definitions of com-
putable functions, most notably, Turing computable functions,
Markov computable functions, and Banach–Mazur computable
functions [19]. For us, the connection between Banach–Mazur
computability and Turing computability is important. Any
function that is Turing computable is always Banach–Mazur
computable. Conversely, any function that is not Banach–
Mazur computable cannot be Turing computable. A function
f : R→ R is called Banach–Mazur computable if f maps any
given computable sequence {xn}n∈N of real numbers into a
computable sequence {f(xn)}n∈N of real numbers. It follows
that a function that is computable with respect to any of the
above definitions has the property that it maps computable
numbers into computable numbers. This property is therefore
a necessary condition for computability. Usual functions like
sin, sinc, log, and exp are Turing computable, and finite
sums of computable functions are Turing computable [9].
We will further use the important fact that every computable
real function is continuous on Rc [19]. For a more detailed
treatment of computability, see for example [9], [10], [18],
[19], and for an example of a non-computable function [22].

We call a function f elementary computable if there exists a
natural number N and computable numbers {αk}Nk=−N such
that

f(t) =
N∑

k=−N
αk

sin(π(t− k))

π(t− k)
. (1)

Note that every elementary computable function f is a finite
sum of Turing computable functions, and hence, Turing com-
putable. As a consequence, for every t ∈ Rc, the number f(t)
is computable. Further, the sum of finitely many elementary
computable functions is computable, as well as the product
of an elementary computable function with a computable
number λ ∈ Cc. Hence, the set of elementary computable
functions is closed with respect to the operations addition
and multiplication with a scalar. Further, for every elementary
computable function f , the norm ‖f‖Bpπ , p ∈ (1,∞] ∩ Rc, is
computable.

A function in f ∈ Bpπ , p ∈ [1,∞) ∩ Rc, is called
computable in Bpπ if there exists a computable sequence of
elementary computable functions {fn}n∈N and a recursive
function ξ : N → N, such that ‖f − fξ(n)‖Bpπ ≤ 2−n for all
n ∈ N. By CBpπ we denote the set of all functions that are
computable in Bpπ . Note that CBpπ has a linear structure. We
can approximate every function f ∈ CB∞π by an elementary
computable function, where we have an “effective” control of
the approximation error. This control of the error is illustrated
in Fig. 1.

Similarly, we define the set CB∞π,0 of all functions in B∞π,0
that are computable in B∞π,0. A function in f ∈ B∞π,0 is called
computable in B∞π,0 if there exists a computable sequence of
elementary computable functions {fn}n∈N and a recursive
function ξ : N → N, such that ‖f − fξ(n)‖B∞π,0 ≤ 2−n for
all n ∈ N. Since for every elementary computable function

computed value

error bar

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

true function
computed function

Fig. 1. For a computable function we can always determine an error bar and
be sure that the true value lies within the specified error range.

fn, the norm ‖fn‖B∞π,0 is computable, it follows immediately
from the inequality∣∣∣‖f‖B∞π,0 − ‖fn‖B∞π,0∣∣∣ ≤ ‖f − fn‖B∞π,0 ,
that the norm ‖f‖B∞π,0 , i.e., the maximum of f , is computable
for all f ∈ CB∞π,0. See also [9, pp. 40].

In order that the above definition of a computable function
in B∞π,0 is meaningful, it is necessary that each f ∈ B∞π,0 can
be approximated in a classical sense by a linear combination
of shifted sinc-functions. This is assured by the next fact.

Fact 1. Let f ∈ B∞π,0. For every ε > 0 there exists an N ∈ N
and numbers {ck}Nk=−N such that∥∥∥∥∥f −

N∑
k=−N

ck
sin(π(t− k))

π(t− k)

∥∥∥∥∥
B∞π,0

< ε.

A set A ⊆ N is called recursively enumerable if A = ∅ or
A is the range of a recursive function. A set A ⊆ N is called
recursive if both A and its complement N \ A are recursively
enumerable. The fact that there exist sets which are recursively
enumerable but not recursive will be important for us [9, p. 7,
Proposition A], [20, p. 18].

The following lemma [9, p. 20, Corollary 2b], in which
a non-computable number is constructed from a recursively
enumerable nonrecursive set, is essential for us.

Lemma 1. Let A ⊂ N be a recursively enumerable non-
recursive set, and φA : N → A a recursive enumeration of
the elements of A, where φA is a one-to-one function, i.e.,
for every element k ∈ A there exists exactly one Nk ∈ N
with φA(Nk) = k. Then the number

∑∞
N=1 2−φA(N) is not

computable.

IV. FOURIER OPTICS

The field of Fourier optics is a well-established discipline
in physics and optics that is older than Turing’s theory of
computability and digital computers [23]. The 2f architecture
in Fourier optics is an optical setup, in which a lens is used
to perform the Fourier transform. This setup can be seen as
an analog machine for computing the Fourier transform of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 4

t ω

F

−2 0 2 4

0

0.5

1

−2π −π 0 π 2π

0

0.5

1fa(t) |f̂a(ω)|

Fig. 2. Illustration of the non-computability of the Fourier transform. In the
left panel we see an approximation fa(t) of the computable time domain func-
tion f∗(t) (the true values lay within the gray shaded area). In the right panel
we see the absolute value of the Fourier transform |f̂a(ω)| = |(Ffa)(ω)|.
The values of f̂a(ω) are computable for all ω ∈ Rc \ {0}, but not for ω = 0
(indicated by the gray vertical bar).

a bandlimited function [24]. In theory, the Fourier transform
computed by such a system is perfect, but in any practical
realization there are always imperfections, such as misalign-
ment and noise, that limit the precision with which the Fourier
transform can be computed.

There are studies that try to construct and analyze comput-
ing machines based on analog components [25]–[31]. In [25],
[26], the computational power of networks of spiking neurons
has been analyzed. Further, in [27], [28], DNA based Turing
machines were analyzed, and chemical implementations were
investigated in [29]–[31]. However, the authors of the above
publications do not seek for analog computers, instead they
use the analog components to construct a digital computer,
i.e., a Turing machine.

The rationale behind these approaches is that being able
to implement a Turing machine with the analog components
shows the ultimate potential of the analog device. However,
this is not necessarily the case. If we consider the Turing
machine as an idealized model of a digital computer with
unlimited memory and computation time, and the 2f archi-
tecture in Fourier optics as an idealized analog device without
noise and other imperfections, our result shows that in certain
situations an idealized analog machine is more powerful than
an idealized digital machine: The idealized analog machine is
capable of computing the Fourier transform, while the Fourier
transform is not Turing computable. However, it is unclear so
far whether this theoretical superiority can be translated into
practice.

V. FOURIER TRANSFORM

In this section we study the computability of the Fourier
transform of certain bandlimited functions. We construct a
continuous bandlimited function f∗ ∈ B12π that is computable
as an element of Bp2π for all 1 < p < ∞, p ∈ Rc, and as
an element of B∞2π,0, such that the Fourier transform f̂∗ is not
a Turing computable function because f̂∗(0) 6∈ Cc. Note that
f∗(t) ∈ Cc for all t ∈ Rc, i.e., f∗(t) is computable for all
computable t, but f̂∗(0) is not computable. This situation is
illustrated in Fig. 2.

Theorem 1. We construct a function f∗ ∈ B12π that is
computable as an element of B∞2π,0 and as an element of Bp2π

for all p ∈ (1,∞)∩Rc, such that f∗ has a continuous Fourier
transform f̂∗ that is not computable in C, because f̂∗(0) 6∈ Cc.
Further, the function f∗ is constructed such that f̂∗(ω) ∈ Cc
for all ω ∈ Rc \ {0}.

Remark 1. The result from Theorem 1 is interesting, because
we have f̂∗(0) 6∈ Cc, but f̂∗(ω) ∈ Cc for all ω ∈ Rc \{0} and

lim
ω→0

f̂∗(ω) = f̂∗(0), (2)

due to the continuity of f̂∗. At a fist glance this might seem
surprising. The explanation is that the convergence in (2) is
not effective.

Remark 2. Since f∗ in our paper is bandlimited, it follows that
there exists a simple series expansion of the Fourier transform:

f̂∗(ω) =
1

2

∞∑
k=−∞

f∗

(
−k

2

)
eiωk/2, ω ∈ (−2π, 2π). (3)

Thus, for the calculation of f̂∗ we have, in addition to the
Fourier integral, the series expression (3), which only requires
the samples of f∗.

Remark 3. Since f∗ ∈ B12π , we have

∞∑
k=−∞

∣∣∣∣f∗(k2
)∣∣∣∣ <∞,

according to Nikol’skiı̆’s inequality [17, p. 49, Th. 6.8]. Hence,
it follows that the series in

f̂∗(ω) =
1

2

∞∑
k=−∞

f∗

(
−k

2

)
eiωk/2, ω ∈ (−2π, 2π),

converges absolutely. Further, we have∣∣∣∣∣f̂∗(ω)− 1

2

N∑
k=−N

f∗

(
−k

2

)
eiωk/2

∣∣∣∣∣ ≤ 1

2

∑
|k|≥N

∣∣∣∣f∗(−k2
)∣∣∣∣ .

Since f∗(−k/2) ∈ Rc, k ∈ Z, it follows that

1

2

N∑
k=−N

f∗

(
−k

2

)
eiωk/2

is a computable trigonometric polynomial. Theorem 1 implies
that this computable sequence of computable trigonometric
polynomials does not converge effectively to f̂∗ in the max-
imum norm, because f̂∗(0) is not computable. Since f̂∗(0)
is not computable, it also follows that is impossible to find
any other computable sequence of computable trigonometric
polynomials that converges effectively to f̂∗ in the maximum
norm.

For the proof of Theorem 1, we need the following two
elementary lemmas, the proofs of which are given in Appen-
dices B and C, respectively. It is important that the constants
on the right hand sides of the inequalities in Lemmas 2 and
3 are computable. The usual upper bounds that exist, see for
example [32, pp. 182–192], contain only general constants,
and therefore are useless for us.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 5

Lemma 2. For all N ∈ N and all ω ∈ R we have∣∣∣∣∣
N∑
k=1

1

k
sin(kω)

∣∣∣∣∣ < π.

Lemma 3. For all N ∈ N and all 0 < δ ≤ 1/2 we have∣∣∣∣∣
N∑
k=1

1

k
cos(kω)

∣∣∣∣∣ ≤ log

(
1

δ

)
+ 2 + 2π

for all ω ∈ R satisfying |ω − k2π| ≥ δ for all k ∈ Z.

Proof of Theorem 1. For N ∈ N, let

gN (t) =
N∑
k=1

1

k

(
sin(π(t− k))

π(t− k)

)2

, t ∈ R.

We have∫ ∞
−∞
|gN (t)| dt =

∫ ∞
−∞

gN (t) dt

=

N∑
k=1

1

k

∫ ∞
−∞

(
sin(π(t− k))

π(t− k)

)2

dt

=

N∑
k=1

1

k
, (4)

where we used that∫ ∞
−∞

(
sin(π(t− k))

π(t− k)

)2

dt =

∫ ∞
−∞

(
sin(πt)

πt

)2

dt

=
1

2π

∫ π

−π
1 dω

= 1, (5)

according to Plancherel’s identity. Thus, we see that gN ∈ B12π .
Since B12π ⊂ B

p
2π for all 1 ≤ p ≤ ∞ [17, p. 49, Lemma 6.6],

it follows that gN ∈ Bp2π for all 1 ≤ p ≤ ∞. Further, we have

ĝN (ω) =

(
N∑
k=1

1

k
e−iωk

)
q̂(ω),

where

q̂(ω) =

∫ ∞
−∞

(
sin(πt)

πt

)2

e−iωt dt =

{
1− |ω|2π , |ω| ≤ 2π,

0, |ω| > 2π.

Since q̂(0) = 1, it follows that

ĝN (0) =
N∑
k=1

1

k

≥
N∑
k=1

∫ k+1

k

1

τ
dτ

=

∫ N+1

1

1

τ
dτ

= log(N + 1). (6)

It can be shown that gN is computable in Bp2π and that the
norm

‖gN‖p =

(∫ ∞
−∞
|gN (t)|p dt

) 1
p

is computable for 1 < p < ∞, p ∈ Rc. We prove the second
fact in Appendix D.

Next, we will derive upper bounds for the Lp(R)-norms of
gN for 1 < p < ∞. For 1 < p < ∞, we have, according to
the Plancherel–Pólya inequality [33, p. 152, Theorem 3], that(∫ ∞

−∞
|gN (t)|p dt

) 1
p

≤ C(p)

(∞∑
k=−∞

∣∣∣∣gN(k2
)∣∣∣∣p
) 1
p

(7)

where

C(p) =
(1 + π)

21/p
·

{
cot(π(p−1)2p), 1 < p < 2,

tan(π(p−1)2p), 2 ≤ p <∞,

is a constant that only depends on p. The value of the constant
C(p) is derived in Appendix A. We have C(p) ∈ Rc for all
p ∈ (1,∞) ∩ Rc. For k ∈ Z we have

gN (k) =

{
1
k , 1 ≤ k ≤ N,
0, otherwise.

Let

aN (l) = gN

(
l +

1

2

)
, l ∈ Z,

and

b(l) =

(
sin(π(l + 1

2))

π(l + 1
2)

)2

, l ∈ Z.

Then we have

aN (l) =

N∑
k=1

1

k

(
sin(π(l + 1

2 − k))

π(l + 1
2 − k)

)2

=

N∑
k=1

1

k
b(l − k).

Since

‖b‖`1 =
∞∑

l=−∞
|b(l)| =

∞∑
l=−∞

b(l)

=
∞∑

l=−∞

(
sin(π(l + 1

2))

π(l + 1
2)

)2

=

∫ ∞
−∞

(
sin(π(t+ 1

2))

π(t+ 1
2)

)2

dt

=

∫ ∞
−∞

(
sin(πt)

πt

)2

dt

= 1,

where the third line follows from [17, p. 50, Th. 6.11] and the
last line from (5). Using Young’s convolution inequality we
obtain

‖aN‖`p ≤ ‖b‖`1
(

N∑
k=1

1

kp

) 1
p

=

(
N∑
k=1

1

kp

) 1
p

. (8)

For k ∈ Z we have

gN (k) =

{
1
k , 1 ≤ k ≤ N,
0, otherwise.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 6

It follows that

∞∑
k=−∞

∣∣∣∣gN (k2
)∣∣∣∣p =

∞∑
k=−∞

|gN (k)|p +
∞∑

k=−∞

∣∣∣∣gN (k +
1

2

)∣∣∣∣p

=
N∑
k=1

1

kp
+

∞∑
k=−∞

|aN (k)|p

≤ 2
N∑
k=1

1

kp
, (9)

where we used (8) in the last line. Combining (7) and (9), we
see that

‖gN‖p ≤ C(p)

(
2
N∑
k=1

1

kp

) 1
p

≤ 2
1
pC(p)

(
1 +

N∑
k=2

∫ k

k−1

1

τp
dτ

) 1
p

= 2
1
pC(p)

(
1 +

∫ N

1

1

τp
dτ

) 1
p

= 2
1
pC(p)

(
1 +

1

p− 1
− 1

(p− 1)Np−1

) 1
p

= 2
1
pC(p)

(
1 +

1

p− 1

) 1
p

=: C1(p), (10)

where, for all p ∈ (1,∞) ∩ Rc, the constant C1(p) is a
computable number.

For N ∈ N, let

hN (t) =
gN (t)

ĝN (0)
, t ∈ R.

Since gN is computable in Bp2π , p ∈ (1,∞) ∩ Rc, and ĝN (0)
is a computable number, it follows that hN is computable in
Bp2π . We further have

‖hN‖p ≤
C1(p)

ĝN (0)
≤ C1(p)

log(N + 1)
, (11)

for p ∈ (1,∞), where we used (10) in the first and (6) in
the second inequality, and ‖hN‖1 = 1, which follows directly
from (4), as well as ĥN (0) = 1. Further, hN is continuous,
because hN ∈ B12π .

Let A ⊂ N be a recursively enumerable nonrecursive set
and φA : N → A a recursive enumeration of the elements of
A, where φA is a one-to-one function. Further, let

f∗(t) =
∞∑
N=1

1

2φA(N)
hN (t), t ∈ R. (12)

Since

∞∑
N=1

∥∥∥∥ 1

2φA(N)
hN

∥∥∥∥
B1

2π

=
∞∑
N=1

1

2φA(N)
<
∞∑
N=1

1

2N
= 1,

we see that the series in (12) converges in the B12π norm,
and that f∗ ∈ B12π . Note that f∗ ∈ B12π implies that f̂∗ is
continuous. Moreover, for p ∈ (1,∞) and M ∈ N, we have∥∥∥∥∥f∗ −

M∑
N=1

1

2φA(N)
hN

∥∥∥∥∥
Bp2π

≤
∞∑

N=M+1

1

2φA(N)
‖hN‖Bp2π

<
∞∑

N=M+1

C1(p)

2N log(N + 1)

<
C1(p)

log(M + 2)

∞∑
N=M+1

1

2N

<
C1(p)

log(M + 2)
,

where we used (11). This shows that, for p ∈ (1,∞)∩Rc, the
computable sequence{

M∑
N=1

1

2φA(N)
hN

}∞
M=1

converges effectively in the Bp2π norm to f∗. Hence, f∗ is com-
putable in Bp2π for all p ∈ (1,∞)∩Rc. f∗ is also computable
in B∞2π,0 because we have ‖f‖B∞2π,0 ≤ (1 + 2π)‖f‖Bp2π for all
f ∈ Bp2π , according to Nikol’skiı̆’s inequality [17, p. 49].

Since f∗ ∈ B12π and hN (t) ≥ 0 for all t ∈ R, it follows
from Lebesgue’s dominated convergence theorem that

f̂∗(ω) =
∞∑
N=1

1

2φA(N)
ĥN (ω).

Hence, we see that

f̂∗(0) =
∞∑
N=1

1

2φA(N)
,

which implies that f̂∗(0) 6∈ Cc according to Lemma 1.
Let ω ∈ (−2π, 2π) \ {0} be arbitrary but fixed and δ =

min{1/2, |ω|, 2π − ω, 2π + ω}. Then we have

|ĥN (ω)| = q̂(ω)

ĝN (0)

∣∣∣∣∣
N∑
k=1

1

k
cos(kω)− i

N∑
k=1

1

k
sin(kω)

∣∣∣∣∣
<

1

ĝN (0)

(
log

(
1

δ

)
+ 2 + 3π

)
︸ ︷︷ ︸

=:C2(δ)

≤ C2(δ)

log(N + 1)
,

where we used Lemmas 2 and 3 in the first inequality. It
follows that∣∣∣∣∣f̂∗(ω)−

M∑
N=1

1

2φA(N)
ĥN (ω)

∣∣∣∣∣ ≤
∞∑

N=M+1

1

2φA(N)
|ĥN (ω)|

<
∞∑

N=M+1

1

2N
|ĥN (ω)|

≤ C2(δ)

∞∑
N=M+1

1

2N log(N + 1)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 7

<
C2(δ)

log(M + 2)

∞∑
N=M+1

1

2N

<
C2(δ)

log(M + 2)
.

For ω ∈ (−2π, 2π) ∩ Rc \ {0}, the constant C2(δ) is com-
putable, and we see that the sequence{

M∑
N=1

1

2φA(N)
ĥN (ω)

}∞
M=1

of computable numbers converges effectively to f̂∗(ω). This
shows that f̂∗(ω) is computable for all ω ∈ (−2π, 2π)∩Rc \
{0}. Since f∗ ∈ B12π and f∗ is continuous, we have f̂∗(ω) = 0
for all |ω| ≥ 2π. Hence, it follows that f̂∗(ω) is computable
for all ω ∈ Rc \ {0}.

Remark 4. For ω 6= 0 we have

|f̂∗(ω)| ≤
∞∑
N=1

|ĝN (ω)|
2φA(N)ĝN (0)

≤ q̂(ω)
∞∑
N=1

1

2φA(N)

≤
∞∑
N=1

1

2φA(N)
= f̂∗(0),

which shows that f̂∗(0) is the maximum of the function
|f̂∗|. Since f̂∗(0) is not computable, it follows that ‖f̂∗‖C =
maxω∈R|f̂∗(ω)| is not computable. This is interesting because
we have f̂∗(ω) ∈ Cc for all ω ∈ Rc\{0} and limω→0 f̂∗(ω) =
f̂∗(0).

VI. ALGORITHMIC DECISION

As we have seen in Theorem 1, there exist functions f in
Bp2π , 1 < p <∞, p ∈ Rc, that are computable in Bp2π , but their
Fourier transform f̂ is not computable in C. From a practical
point of view it would be desirable to have an algorithm with
which we can decide in advance for each function f ∈ CBp2π
whether f̂ is computable or not. This information would also
be necessary for the application of computer aided control
system design where we need to avoid problematic functions.
In the following, we study the question if such an algorithm
can be developed.

For 1 < p <∞, p ∈ Rc, let

Up =
{
f ∈ B12π ∩ CB

p
2π : f̂ is computable

}
.

Thus, Up is the set of benign functions, i.e., functions for
which the Fourier transform is computable. Note that every
function f ∈ Up has a continuous Fourier transform f̂ , because
f ∈ B12π . Now the question is: Does there exist a Turing
machine TM : B12π ∩ CB

p
2π → {0, 1} with TM(f) = 1 if and

only if f ∈ Up? Such a machine would give us the answer
to the question whether the Fourier transform of a function
f ∈ B12π ∩ CB

p
2π is computable or not. If the output of the

machine is “1” then the Fourier transform is computable, if
the output is “0” then the Fourier transform is not computable.

The next theorem answers this question about the existence
of such a Turing machine in the negative. Note that since
B12π ⊂ B

p
2π , 1 < p <∞, the set B12π∩CB

p
2π is relatively small.

Yet we cannot always algorithmically decide if a function in
this set has a computable Fourier transform or not.

Theorem 2. Let 1 < p <∞, p ∈ Rc. There exists no Turing
machine that can decide for all f ∈ B1

2π ∩ CB
p
2π whether

f ∈ Up or f 6∈ Up.

Proof. Let 1 < p <∞, p ∈ Rc, and f∗ be the function from
Theorem 1 and g ∈ Up. We have f∗ ∈ B1

2π ∩ CB
p
2π \ Up. For

µ ∈ [−1, 1]∩Rc, we consider the function Fµ = µf∗+(1−µ)g
and set ψ(µ) = χUp(Fµ), where χUp denotes the characteristic
function of the set Up. For µ = 0 we have F0 = g ∈ Up.
For all other µ, i.e., µ ∈ [−1, 1] ∩ Rc \ {0}, we have Fµ ∈
B12π ∩ CB

p
2π \ Up, because f∗ ∈ B12π ∩ CB

p
2π \ Up. Thus, we

see that

ψ(µ) =

{
1, µ = 0,

0, µ ∈ [−1, 1] ∩ Rc \ {0}.

It follows that for every computable sequence {µn}n∈Z of real
numbers with limn→∞ µn = 0 and µn 6= 0, n ∈ N, we have

0 = lim
n→∞

ψ(µn) < ψ(0) = 1,

i.e., ψ is a discontinuous function on [−1, 1] ∩ Rc. This im-
plies that ψ is not Banach–Mazur computable, because every
Banach–Mazur computable function is necessarily continuous
[19].

We prove the assertion by contradiction. Assume that there
exists a Turing machine that for all f ∈ B12π ∩ CB

p
2π can

decide whether f ∈ Up. This means we can construct a Turing
machine TM1 : B12π ∩ CB

p
2π → {0, 1} with TM1(f) = 1 if

and only if f ∈ Up.
For µ ∈ [−1, 1] ∩ Rc, we have ψ(µ) = χUp(Fµ) =

TM(Fµ). Further, since Fµ is computable, there exists a
Turing machine TM2 : [−1, 1] ∩ Rc → B1

2π ∩ CB
p
2π with

TM2(µ) = Fµ. It follows that the concatenation of both
Turing machines gives a Turing machine TM3 : [−1, 1]∩Rc →
{0, 1} with TM3(µ) = TM1(TM2(µ)) = TM1(Fµ) = ψ(µ).
Let {λn}n∈N be a computable sequence of real numbers.
Then {qn}n∈N with qn = TM3(λn) = ψ(λn), n ∈ N, is
a computable sequence. Hence, ψ maps the computable se-
quence {λn}n∈N into the computable sequence {ψ(λn)}n∈N,
or, in other words, ψ is Banach–Mazur computable. This is a
contradiction, because above we have already shown that ψ is
not Banach–Mazur computable.

VII. DISCRETE-TIME FOURIER TRANSFORM

The discrete-time Fourier transform (DTFT) of a sequence
x = {x(k)}k∈Z is defined as

X(eiω) =
∞∑

k=−∞
x(k) e−iωk . (13)

The DTFT enables us to analyze sequences in the frequency
domain, and therefore is an essential tool in signal processing
[5], [34], [35]. A practical and very important fact is the
convolution theorem of the DTFT. Let

(x ∗ y)(l) =
∞∑

k=−∞
x(l − k)y(k)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 8

denote the convolution of the two sequences x and y. Since
DTFT (x ∗ y)(ω) = X(eiω)Y (eiω), the convolution can be
calculated in the frequency domain, according to the convolu-
tion theorem of the DTFT

(x ∗ y)(l) = DTFT−1[DTFT [x]DTFT [y]](l). (14)

In many cases this allows a more efficient implementation of
the convolution.

A very closely related transform is the discrete Fourier
transform (DFT), which is the basis of many applications in
signal processing and modern communications [2], [3], [5],
[36]. For the DFT only finite segments of the discrete-time
signal are considered. Then the infinite sum in (13) reduces
to a finite sum, and X has to be evaluated only for a finite
set of discrete frequencies. Thus, the DFT is well suited for
being implemented on digital computers. In particular, its
implementation in the form of the FFT algorithm is widely
used [37]–[39].

A crucial point in any implementation of the DTFT is
that X can be effectively approximated, for example by a
finite series. This means, for any given prescribed error ε,
we need to be able to approximate X by an algorithm in a
computable number of steps, such that the approximation error
is guaranteed to be less than ε. This kind of error control is
only possible if X is computable.

From a signal theoretic point of view, we are used to “equiv-
alence” between time and frequency domain, and theorems
like the convolution theorem enable us to make efficient use
of the frequency domain representation of discrete signals. In
the next section we will analyze whether this “equivalence”
between time domain and frequency domain still holds from
a computational perspective. This is relevant if we want to
implement an algorithm, such as (14), on a digital computer.

As outlined in the introduction, we are interested in whether
the DTFT of a well-behaved sequence is always computable.
In this paper we will only consider sequences in `p(Z), 1 ≤
p < ∞. The weakest requirement, i.e., a necessary condition
for computability, is that X(eiω) ∈ Cc for all ω ∈ [0, 2π)∩Rc.
By constructing a counter example, we show that this is not
always the case.

Theorem 3. We can construct a sequence x∗ with the follow-
ing properties:

1) x∗ ∈ `p+(Z) for all 1 ≤ p <∞,
2) x∗ ∈ C`p+(Z), i.e, x∗ is computable as an element of

`p+(Z) for all 1 < p <∞, p ∈ Rc,
3) X∗ ∈ W ,
4) X∗(eiω) is absolutely continuous, i.e., the derivative

d
dωX∗(e

iω) exists almost everywhere with respect to the
Lebesgue measure, we have d

dωX∗(e
iω) ∈ L1(∂D) and

X∗ can be represented as the integral of d
dωX∗(e

iω),
5) X∗(1) 6∈ Cc and X∗(eiω) ∈ Cc for all ω ∈ (0, 2π)∩Rc,
6) ‖X∗‖C is not computable.

According to Theorem 3, for the computable sequence x∗
we cannot compute the DTFT X∗ as a function, because X∗(1)
is not computable. This implies that we cannot algorithmically
compute X∗ on a digital computer with control of the approx-
imation error.

We can also interpret Theorem 3 as a representation result
for continuous 2π-periodic functions. In this light, X(e−iω)
is a continuous 2π-periodic function and x are its Fourier
coefficients. Theorem 3 shows that although the sequence
of Fourier coefficients x is computable and has very nice
properties, the corresponding continuous function X(e−iω),
defined by the Fourier series, is not computable because
X(1) 6∈ Cc.

If we do not require the properties 3, 4, and 6 to hold, we
can even strengthen the non-computability statement of the
theorem.

Theorem 4. We can construct a sequence x∗∗ with the
following properties:

1) x∗∗ ∈ `p+(Z) for all 1 ≤ p <∞,
2) x∗∗ ∈ C`p+(Z), i.e., x∗∗ is computable as an element of

`p+(Z), for all 1 < p <∞, p ∈ Rc,
3) For all M ∈ N we have for all 0 ≤ l ≤ 2M − 1 that

X∗∗(eil2π/2
M

) 6∈ Cc, i.e., X∗∗(eiω) is not computable
for all frequencies ω on all dyadic grids.

We call any subset of [0, 2π] that, for some M ∈ N, has the
form {l2π/2M : 0 ≤ l ≤ 2M − 1}, a dyadic grid. Theorem 4
implies that the inverse DTFT integral

x∗∗(k) =
1

2π

∫ π

−π
X∗∗(e

iω) eiωk dω, k ∈ Z,

cannot be evaluated numerically as a Riemann sum on the
dyadic grid, because X∗∗ is not computable at these points.
In general, since X∗∗ is not computable on the dyadic grid, all
approaches that rely on these numbers, like the inverse DFT
[4], [40], [41], cannot be used.

Since x∗∗ is computable in `2+(Z), it follows that X∗∗ is
computable in L2(∂D), i.e., X∗∗ can be effectively approx-
imated by computable trigonometric polynomials. However,
these polynomials have to be constructed first, and the values
of X∗∗ on the dyadic grid, i.e., the values X∗∗(eil2π/2

M

),
0 ≤ l ≤ 2M −1, cannot be used for this construction, because
they are not computable.

For the proof of Theorem 3, we need two lemmas.

Lemma 4. For all ω ∈ (0, 2π), there exists a constant
C3(ω) <∞, such that

N∑
k=2

1

k log(k)
cos(kω) ≤ C3(ω)

for all N ∈ N. For ω ∈ (0, 2π) ∩ Rc, we have C3(ω) ∈ Rc.

Lemma 5. There exists a continuous 2π-periodic function
Q(ω), such that

lim
N→∞

max
ω∈[0,2π)

∣∣∣∣∣Q(ω)−
N∑
k=2

1

k log(k)
sin(kω)

∣∣∣∣∣ = 0.

Further, there exists a computable constant C4 ∈ Rc such that∣∣∣∣∣
N∑
k=2

1

k log(k)
sin(kω)

∣∣∣∣∣ ≤ C4

for all ω ∈ [0, 2π).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 9

Lemmas 4 and 5 are known results about trigonometric
series, and can, for example, be found in [13].

Now we are in the position to prove Theorem 3.

Proof of Theorem 3. Let N ∈ N, N ≥ 2 be arbitrary. We
consider

xN (k) =

{
C(N)
k log(k) , 2 ≤ k ≤ N,
0, otherwise,

where

C(N) =

(
N∑
k=2

1

k log(k)

)−1
.

For all k ∈ N, k log(k) is a computable number. Therefore,
C(N) is computable. Hence, xN is a computable sequence of
computable numbers. Since

1

k log(k)
>

∫ k+1

k

1

τ log(τ)
dτ

for all k ≥ 2, we have
N∑
k=2

1

k log(k)
>

∫ N+1

2

1

τ log(τ)
dτ = log

(
log(N + 1)

log(2)

)
,

and it follows that

C(N) <

(
log

(
log(N + 1)

log(2)

))−1
< 3. (15)

Further, for p ∈ [1,∞) ∩ Rc, we have xN ∈ C`p+(Z) and
‖xN‖`p is computable. For p > 1, we have

‖xN‖p`p < (C(N))p
N∑
k=1

1

kp

< (C(N))p

(
1 +

N∑
k=2

∫ k

k−1

1

τp
dτ

)

< (C(N))p
(

1 +
1

p− 1

)
, (16)

where we used

1/kp <

∫ k

k−1
1/τp dτ

for all k ≥ 2 in the second inequality. For p = 1, we have

‖xN‖`1 = 1. (17)

The DTFT of the sequence xN is given by

XN (eiω) =
N∑
k=2

xN (k) e−ikω, ω ∈ [0, 2π),

and we have

|XN (eiω)| ≤
N∑
k=2

|xN (k)| = 1 (18)

for all ω ∈ [0, 2π), as well as

XN (1) =
N∑
k=2

xN (k) = 1.

Hence, it follows that

max
ω∈[0,2π)

|XN (eiω)| = XN (1) = 1.

Let

AN (ω) = C(N)
N∑
k=2

1

k log(k)
cos(kω) (19)

and

BN (ω) = C(N)
N∑
k=2

1

k log(k)
sin(kω). (20)

Then we have

XN (eiω) = AN (ω)− iBN (ω).

Let A ⊂ N be an arbitrary recursively enumerable nonre-
cursive set [20]. Further, let φA : N → A be a recursive
enumeration of the set A, such that for every element k ∈ A
there exists exactly one Nk ∈ N with φA(Nk) = k. We
consider

X∗(e
iω) =

∞∑
N=2

1

2φA(N)
XN (eiω), ω ∈ [0, 2π), (21)

and

x∗(k) =
∞∑
N=2

1

2φA(N)
xN (k), k ∈ Z. (22)

For p > 1, using (16) and (15), we obtain

‖x∗‖`p ≤
∞∑
N=2

1

2φA(N)
‖xN‖`p

≤
(

1 +
1

p− 1

) 1
p
∞∑
N=2

1

2φA(N)
C(N)

< 3

(
1 +

1

p− 1

) 1
p
∞∑
N=2

1

2N

=
3

2

(
1 +

1

p− 1

) 1
p

and, for p = 1, using (17),

‖x∗‖`1 ≤
∞∑
N=2

1

2φA(N)
‖xN‖`1 <

1

2
.

This proves item 1, as well as item 3.
Further, for p ∈ (1,∞) ∩ Rc and M ≥ 2, we have∥∥∥∥∥x∗ −

M∑
N=2

1

2φA(N)
xN

∥∥∥∥∥
`p

=

∥∥∥∥∥
∞∑

N=M+1

1

2φA(N)
xN

∥∥∥∥∥
`p

≤
(

1 +
1

p− 1

) 1
p

∞∑
N=M+1

1

2φA(N)
C(N)

< C(M + 1)

(
1 +

1

p− 1

) 1
p

∞∑
N=M+1

1

2N

<
1

2

(
log

(
log(M + 1)

log(2)

))−1(
1 +

1

p− 1

) 1
p

,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 10

where we used C(N) > C(N + 1) for all N ≥ 2. Thus, we
see that the computable sequence{

M∑
N=2

1

2φA(N)
xN

}∞
M=2

converges effectively to x∗. Hence, x∗ is computable in `p+(Z),
p ∈ (1,∞) ∩ Rc. This proves item 2.

Further, the sequence in (21) convergences absolutely and
uniformly, and thus we have X∗ ∈ C(∂D). For ω ∈ (0, 2π),
we have

|X∗(eiω)| ≤
∞∑
N=2

1

2φA(N)
|XN (eiω)|

≤
∞∑
N=2

1

2φA(N)

= X∗(1),

where we used (18) in the second inequality. It follows that

‖X∗‖C = max
[0,2π)

|X∗(eiω)| = X∗(1).

Since we have
∞∑
N=2

2−φA(N) 6∈ Rc,

it follows that X∗(1) 6= Cc and ‖X∗‖C 6= Cc. This proves
item 6 and the first part of item 5. Let

A(ω) =
∞∑
N=2

1

2φA(N)
AN (ω) (23)

and

B(ω) =
∞∑
N=2

1

2φA(N)
BN (ω). (24)

The series in (23) and (24) are absolutely convergent. Further,
for ω ∈ [0, 2π) and M ≥ 2, we have∣∣∣∣∣B(ω)−

M∑
N=2

1

2φA(N)
BN (ω)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

N=M+1

1

2φA(N)
BN (ω)

∣∣∣∣∣
≤

∞∑
N=M+1

1

2φA(N)
|BN (ω)|

≤ C4

∞∑
N=M+1

C(N)

2φA(N)

< C4

(
log

(
log(M + 1)

log(2)

))−1 ∞∑
N=M+1

1

2φA(N)

<
C4

2

(
log

(
log(M + 1)

log(2)

))−1
,

where we used Lemma 5 in the second inequality. Note that
C4 is a computable number. Thus, the computable sequence{

M∑
N=2

1

2φA(N)
BN (ω)

}∞
M=2

of computable numbers converges effectively to B(ω). Hence,
we have B(ω) ∈ Rc for all ω ∈ [0, 2π)∩Rc. For ω ∈ (0, 2π)
and M ≥ 2, we have∣∣∣∣∣A(ω)−

M∑
N=2

1

2φA(N)
AN (ω)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

N=M+1

1

2φA(N)
AN (ω)

∣∣∣∣∣
<

C3(ω)

2 log
(

log(M+1)
log(2)

) , (25)

where we used Lemma 4 in the second line. For ω ∈ (0, 2π)∩
Rc we have C3(ω) ∈ Rc. Thus, for ω ∈ (0, 2π) ∩ Rc, the
computable sequence{

M∑
N=2

1

2φA(N)
AN (ω)

}∞
M=2

of computable numbers converges effectively to A(ω). Hence,
we have A(ω) ∈ Rc for all ω ∈ (0, 2π) ∩ Rc. Thus, we see
that

X∗(e
iω) = A(ω)− iB(ω)

is computable for all ω ∈ (0, 2π)∩Rc. This proves the second
part of item 5.

Last, we prove item 4. Let

KN (ω) = XN (eiω), ω ∈ [0, 2π).

Since KN is absolutely continuous, the derivative K ′N exists
almost everywhere with respect to the Lebesgue measure, and
we have K ′N ∈ L1([0, 2π)) as well as

KN (ω) =

∫ ω

0

K ′N (ξ) dξ +KN (0).

According to the definition of X∗ in (21), we have

X∗(e
iω) =

∞∑
N=2

1

2φA(N)
KN (ω).

Let

G(ω) =
∞∑
N=2

1

2φA(N)
K ′N (ω). (26)

Since

‖K ′N‖L1([0,2π)) = ‖A′N − iB′N‖L1([0,2π)),

it follows from Lemma 6, which we state and prove later, that
there exists a constant C5 such that

‖K ′N‖L1([0,2π)) ≤ C5 (27)

for all N . It follows that the series in (26) converges in the
L1([0, 2π))-norm and that G ∈ L1([0, 2π)). Further, we have

M∑
N=2

1

2φA(N)
KN (ω)

=

M∑
N=2

1

2φA(N)

(∫ ω

0

K ′N (ξ) dξ +KN (0)

)

=

∫ ω

0

M∑
N=2

1

2φA(N)
K ′N (ξ) dξ +

M∑
N=2

1

2φA(N)
KN (0).

(28)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 11

Let

U(ω) =

∫ ω

0

G(ξ) dξ +
∞∑
N=2

1

2φA(N)
KN (0). (29)

Then U is absolutely continuous, according to the fundamental
theorem of Lebesgue integral calculus. From (28) and (29) we
see that∣∣∣∣∣U(ω)−

M∑
N=2

1

2φA(N)
KN (ω)

∣∣∣∣∣
=

∣∣∣∣∣
∫ ω

0

(∞∑
N=2

1

2φA(N)
K ′N (ξ)−

M∑
N=2

1

2φA(N)
K ′N (ξ)

)
dξ

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

N=M+1

1

2φA(N)

∫ ω

0

K ′N (ξ) dξ

∣∣∣∣∣
≤

∞∑
N=M+1

1

2φA(N)

∫ ω

0

|K ′N (ξ)| dξ

≤ C5

∞∑
N=M+1

1

2N
,

where we used (27) in the last inequality. This shows that

U(ω) = lim
M→∞

M∑
N=2

1

2φA(N)
KN (ω) = X∗(e

iω)

for all ω ∈ [0, 2π). Hence, X∗(eiω) is absolutely continuous.

Remark 5. The sequence {XN}N∈N in the proof of Theorem 3
converges uniformly to X∗, but the approximation error cannot
be effectively controlled, i.e., to a given prescribed error it is
not possible to algorithmically compute an index M such that
XM achieves this error.

We state and prove Lemma 6 next.

Lemma 6. There exist two constants C6 and C7 such that

‖A′N‖L1([0,2π)) ≤ C6

and
‖B′N‖L1([0,2π)) ≤ C7

for all N ∈ N.

Proof. We have

A′N (ω) = −C(N)
N∑
k=2

1

log(k)
sin(kω)

and

B′N (ω) = C(N)
N∑
k=2

1

log(k)
cos(kω).

Using the bounds from [32, pp. 182–192], it can be shown
that ∥∥∥∥∥

N∑
k=2

1

log(k)
sin(k ·)

∥∥∥∥∥
1

∼ C8 log(log(N))

and that there exists a constant C9 such that∥∥∥∥∥
N∑
k=2

1

log(k)
cos(k ·)

∥∥∥∥∥
1

≤ C9

for all N ∈ N, N ≥ 2. Since

C(N) <

(
log

(
log(N + 1)

log(2)

))−1
,

the assertion follows.

Finally, we prove Theorem 4.

Proof of Theorem 4. For K ∈ N, let

xK(k) =

{
1

K+1 , if k = 2m for some m ∈ [K, 2K],

0, otherwise.

Then we have

XK(eiω) =
∞∑
k=0

xK(k) e−inω =
1

K + 1

2K∑
k=K

e−iω2
k

.

For M ∈ N, K ≥M we have for 0 ≤ l ≤ 2M − 1 that

XK(ei
l2π

2M) =
1

K + 1

2K∑
k=K

e−i
l2π

2M
2k =

1

K + 1

2K∑
k=K

ei0 = 1.

Let A ⊂ N be a recursively enumerable nonrecursive set
and φA : N → A a recursive enumeration of the elements of
A, where φA is a one-to-one function. We consider

x∗∗(k) =
∞∑
K=1

1

2φA(K)
xK(k), k ∈ Z. (30)

The series in (30) converges in `1+(Z), and, using similar
calculations as in the proof of Theorem 3, it is shown that x∗∗
is computable in C`p+(Z) for 1 < p <∞, p ∈ Rc. Further, we
have

X∗∗(e
iω) =

∞∑
n=0

x∗∗(n) e−inω =
∞∑
K=1

1

2φA(K)
XK(eiω),

where both series are absolutely convergent. Let M ∈ N be
arbitrary, and consider 0 ≤ l ≤ 2M − 1. We have

X∗∗(e
i l2π
2M) =

∞∑
K=1

1

2φA(K)
XK(ei

l2π

2M)

=
M−1∑
K=1

1

2φA(K)
XK(ei

l2π

2M) +
∞∑

K=M

1

2φA(K)

= C(l,M) +
∞∑

K=M

1

2φA(K)
,

because XK(ei
l2π

2M) = 1 for K ≥M . C(l,M) is a finite sum
of computable complex numbers and hence computable. For
every M ∈ N the number

∞∑
K=M

1

2φA(K)

is not computable, because
∞∑

K=M

1

2φA(K)
=
∞∑
K=1

1

2φA(K)
−
M−1∑
K=1

1

2φA(K)
, (31)

and the first sum on the right hand side of (31) is not
computable while the second sum is computable.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 12

VIII. APPLICATION I

The output of an LTI system can either be calculated in
the time domain as a convolution or in the frequency domain
by multiplying the system input with the transfer function of
the LTI system, as illustrated in Fig. 3. In this section we use
the result from the previous section to show that there is no
duality between the time domain and frequency domain with
respect to computability.

We consider energetically stable LTI systems and the input
signal space `2+(Z). Let hT denote the impulse response of the
LTI system. We assume that hT ∈ `2+(Z), i.e., that the system
is causal, and that HT ∈ L∞(∂D). Even further, we restrict
ourselves to such systems for which HT ∈ C(∂D). Then the
system output y is given by

y(k) =
k∑
l=0

hT (k − l)x(l) =
k∑
l=0

hT (l)x(k − l), k ∈ N.

If hT ∈ `2+(Z) and x ∈ `2+(Z) are computable as sequences
in `2+(Z), then y(k) is computable for every k ∈ N, because
both sums above are finite. Let hT∗(k) = x∗(k), k ∈ N, where
x∗ is the sequence that was defined in (22). We have

|HT∗(e
iω)| ≤

∞∑
N=2

1

2φA(N)
<

∞∑
N=2

1

2N
=

1

2
< 1, (32)

for all ω ∈ [0, 2π). That is, the operator norm of the system
T∗ satisfies ‖T∗‖ < 1.

Next, we show that for all computable input sequences x ∈
`2+(Z), the output sequence y is computable as an element
of `2+(Z). Let x ∈ `2+(Z) be a computable sequence. Since
x ∈ `2+(Z) is computable, there exists a sequence {xN}N∈N
with xN (k) 6= 0 for only finitely many k and xN (k) ∈ Cc for
all k ∈ N, as well as a recursive function ξ : N→ N, such that
for all m ∈ N we have ‖x−xN‖`2 < 2−m for all N ≥ ξ(m).
Let MN = max{k ∈ N : xN (k) 6= 0}. Then we have

yN (k) =

MN∑
l=2

hT∗(k − l)xN (l).

Since yN (k) is computable for every k ∈ Z, it follows that
yN , as a weighted sum of computable sequences, where the
weights are computable, is a computable sequence. Using (32),
we obtain

‖y − yN‖2`2 =
1

2π

∫ π

−π
|HT∗(e

iω)|2|X(eiω)−XN (eiω)|2 dω

≤ 1

2π

∫ π

−π
|X(eiω)−XN (eiω)|2 dω

= ‖x− xN‖2`2 .

Hence, for all m ∈ N, we have

‖y − yN‖`2 ≤ ‖x− xN‖`2 < 2−m (33)

for all N ≥ ξ(m). Although infinitely many elements of
yN are non-zero, it can be shown that (33) implies that y
is computable in `2(Z).

We further have

Y (eiω) = HT∗(e
iω)X(eiω)

Time domain hT∗x y = hT∗ ∗ x

Frequency domain HT∗X Y = HT∗ ·X

Input signal LTI system Output signal

DTFT DTFT−1

Fig. 3. Computation of the system output in the time and the frequency
domain. With respect to computability there is no duality between the time
and the frequency domain.

for almost all ω ∈ [0, 2π). However, we cannot use the DTFT
to compute y, because HT∗ is not computable as an element of
C(∂D). Thus, although the convolution is computable in the
time domain according to above discussion, a computation of
y via the frequency domain is not possible.

IX. APPLICATION II

The Poisson summation formula
∞∑

k=−∞
f(k) =

∞∑
k=−∞

f̂(k2π)

is frequently used, for example, to prove sampling theorems
[42], [43]. By stating that the sum of the time domain
samples equals the sum of the frequency domain samples,
it connects the time and frequency domain. According to
Poisson’s summation formula, we have for functions f ∈ B12π ,
1 ≤ p <∞, that

1

2

∞∑
k=−∞

f

(
−k

2

)
eiωk/2 =

∞∑
k=−∞

f̂(k4π + ω)

= f̂(ω), ω ∈ (−2π, 2π),

where the last equality follows from the fact that f̂(ω) is
zero for ω ∈ R \ [−2π, 2π]. We know that f̂∗(ω), is not
computable as a function, because f̂∗(0) is not computable.
Hence, it follows that

1

2

∞∑
k=−∞

f∗

(
−k

2

)
eiωk/2

is not computable either. This is surprising, since all compo-
nents of this sum are computable.

X. CONCLUSION AND OUTLOOK

Since nowadays most computations are done on digital
computers, the question of computability arises. In this paper,
we analyzed the computability of the Fourier transform and
the discrete-time Fourier transform, and proved that there
exist well-behaved signals for which the transforms exist
mathematically, but which are not Turing computable. Hence,
the transforms of these signals cannot be computed on any
digital hardware, such as CPUs, FPGAs, or DSPs. This result

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 13

also implies that the usual duality between time and frequency
domain does not hold with respect to computability. While the
Fourier transform is not computable on a Turing machine, i.e.,
the theoretically ideal digital machine, it can be computed on
an ideal analog machine, as discussed in Section IV. Whether
and how this theoretical superiority of the analog machine can
be translated into practice is unclear. Finding suitable analog
implementations could be a goal of further investigations.

APPENDIX A
DERIVATION OF THE CONSTANT C(p)

Next, we will derive the explicit constant C(p) in (7). We
will sketch the main steps of the proof.

Let

(Lπg)(t) =

∫ ∞
−∞

g(τ)
sin(π(t− τ))

π(t− τ)
dτ.

For g ∈ Lp(R), 1 < p <∞, we have

(Lπg)(t) =

∫ ∞
−∞

g(τ)
sin(π(t− k))

π(t− k)
dτ

=
eiπt

2πi
V.P.

∫ ∞
−∞

g(τ) e−iπτ

t− τ
dτ

−
e−iπt

2πi
V.P.

∫ ∞
−∞

g(τ) eiπτ

t− τ
dτ

=
eiπt

2i
H(g e−iπ ·)(t)−

e−iπt

2i
H(g eiπ ·)(t)

for almost all t ∈ R, where H denotes the Hilbert transform.
Further, we see that

‖Lπg‖p ≤
1

2
‖H(g e−iπ ·)‖p +

1

2
‖H(g eiπ ·)‖p

≤ 1

2
CH(p)‖g e−iπ · ‖p +

1

2
CH(p)‖g eiπ · ‖p

= CH(p)‖g‖p, (34)

because H : Lp(R)→ Lp(R) is a bounded operator, satisfying
‖Hf‖Lp(R) ≤ CH(p)‖f‖Lp(R) for all f ∈ Lp(R), where

CH(p) := ‖H‖ =

tan
(
π
2p

)
, 1 < p ≤ 2,

cot
(
π
2p

)
, 2 < p <∞,

is a constant that depends only on p [44].
Let 1 < p < ∞ be arbitrary but fixed and q such that

1/p+1/q = 1. It can be shown that for f ∈ Bpπ and g ∈ Lq(R),
we have ∫ ∞

−∞
f(t)g(t) dt =

∫ ∞
−∞

(Lπf)(t)g(t) dt

=

∫ ∞
−∞

f(t)(Lπg)(t) dt.

Since f ∈ Bpπ and Lπg ∈ Bqπ , we can use [17, p. 50, Th. 6.11]
to obtain∫ ∞

−∞
f(t)(Lπg)(t) dt =

∞∑
k=−∞

f(k)(Lπg)(k).

−π −π
2 0 2π

13

π
2

π

−2

0

2

4

6

ω

f ′6(ω)

Fig. 4. Plot of the function f ′6 for N = 6.

Hence, it follows that∣∣∣∣∫ ∞
−∞

f(t)g(t) dt

∣∣∣∣ ≤ ∞∑
k=−∞

|f(k)(Lπg)(k)|

≤

(∞∑
k=−∞

|f(k)|p
) 1
p
(∞∑
k=−∞

|(Lπg)(k)|q
) 1
q

≤

(∞∑
k=−∞

|f(k)|p
) 1
p

(1 + π)‖Lπg‖q

≤

(∞∑
k=−∞

|f(k)|p
) 1
p

(1 + π)CH(q)‖g‖p, (35)

where we used Nikol’skiı̆’s inequality [17, p. 49, Th. 6.8] in
the second to last inequality and (34) in the last. Since (35) is
true for all g ∈ Lq(R), we obtain

‖f‖p = sup
g∈Lq(R)
‖g‖q≤1

∣∣∣∣∫ ∞
−∞

f(t)g(t) dt

∣∣∣∣
≤

(∞∑
k=−∞

|f(k)|p
) 1
p

(1 + π)CH(q)

for all f ∈ Bpπ .

APPENDIX B
PROOF OF LEMMA 2

Proof of Lemma 2. Let N ∈ N be arbitrary but fixed. Since

N∑
k=1

1

k
sin(kω) =

∫ ω

0

N∑
k=1

cos(kτ) dτ,

it follows that
N∑
k=1

1

k
sin(kω) =

∫ ω

0

sin
(
2N+1

2 τ
)

2 sin
(
τ
2

) dτ − ω

2

for all N ∈ N and ω ∈ R. Let

fN (ω) =

∫ ω

0

sin
(
2N+1

2 τ
)

2 sin
(
τ
2

) dτ, ω ∈ R.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 14

The zeros of f ′N on the positive real axis are given by
{2πn/(2N + 1)}n∈N, and we have f ′N (ω) > 0 for t ∈
[0, 2π/(2N + 1)). The function f ′6 is plotted in Fig. 4 for
illustrative purposes. Due to the general behavior of f ′N , we
see that fN (ω) attains its maximum at ω = 2π/(2N + 1). We
have

fN

(
2π

2N + 1

)
=

∫ 2π
2N+1

0

sin
(
2N+1

2 τ
)

2 sin
(
τ
2

) dτ

=

∫ 2π
2N+1

0

1

2
+

N∑
k=1

cos(kτ) dτ

≤
∫ 2π

2N+1

0

2N + 1

2
dτ

= π.

Thus, for 0 < ω < π it follows that
N∑
k=1

1

k
sin(kω) = fN (ω)− ω

2

< fN (ω)

≤ fN
(

2π

2N + 1

)
≤ π.

Further, we have
∑N
k=1 sin(kω)/k > 0 for 0 < ω < π [32,

p. 62, Theorem 9.4]. Since the sum
∑N
k=1 sin(kω)/k is zero

for ω = 0 and ω = π, and an odd 2π-periodic function, we
see that |

∑N
k=1 sin(kω)/k| < π for all ω ∈ R.

APPENDIX C
PROOF OF LEMMA 3

Proof of Lemma 3. Let δ ∈ (0, 1/2] be arbitrary but fixed, and
let

FN (ω) =
N∑
k=1

1

k
cos(kω).

We distinguish two cases: N ≤ 1/δ and N > 1/δ. We start
with the case N ≤ 1/δ. Then we have

|FN (ω)| ≤
N∑
k=1

1

k
|cos(kω)|

≤
N∑
k=1

1

k

< 1 +

∫ N

1

1

x
dx

= 1 + log(N)

≤ 1 + log

(
1

δ

)
(36)

for all ω ∈ R. Next we treat the case N > 1/δ. Let Nδ =
b1/δc be the largest natural number such that Nδ ≤ 1/δ. Note
that Nδ > 1/δ − 1 ≥ 1. We have

FN (ω) =

Nδ∑
k=1

1

k
cos(kω) +

N∑
k=Nδ+1

1

k
cos(kω). (37)

For the first sum in (37), we have according to (36) that∣∣∣∣∣
Nδ∑
k=1

1

k
cos(kω)

∣∣∣∣∣ < 1 + log

(
1

δ

)
(38)

for all ω ∈ R. For the second sum in (37), we observe that
N∑

k=Nδ+1

1

k
cos(kω) =

N∑
k=Nδ+1

1

k
(ck(ω)− ck−1(ω)),

where ck(ω) =
∑k
n=1 cos(nω), and use summation by parts

to obtain
N∑

k=Nδ+1

1

k
cos(kω) =

1

N
cN (ω)− 1

Nδ + 1
cNδ(ω)

+
N−1∑

k=Nδ+1

1

k(k + 1)
ck(ω). (39)

Next, we need an upper bound for |ck(ω)|, k ∈ N, ω ∈ [δ, π].
Using the identity for the Dirichlet kernel, we see that

ck(ω) =

k∑
n=1

cos(nω) =
sin
(
2k+1

2 ω
)

2 sin
(
ω
2

) − 1

2
,

and consequently, that

|ck(ω)| ≤ 1

2 sin
(
ω
2

) +
1

2
.

Since ω ∈ [δ, π], we have sin (ω/2) ≥ ω/π ≥ δ/π. It follows
that

|ck(ω)| ≤ π

2δ
+

1

2
(40)

for all k ∈ N and all ω ∈ [δ, π]. Now we can upper bound the
tree terms on the right hand side of (39). Since N > 1/δ and
Nδ + 1 > 1/δ, and by using (40), we see that∣∣∣∣ 1

N
cN (ω)

∣∣∣∣ < δ

(
π

2δ
+

1

2

)
=
π + δ

2
≤ π

2
+

1

4
(41)

and∣∣∣∣ 1

Nδ + 1
cN (ω)

∣∣∣∣ < δ

(
π

2δ
+

1

2

)
=
π + δ

2
≤ π

2
+

1

4
(42)

for all ω ∈ [δ, π]. For the third term in (39), we obtain∣∣∣∣∣
N−1∑

k=Nδ+1

1

k(k + 1)
ck(ω)

∣∣∣∣∣
≤

N−1∑
k=Nδ+1

1

k(k + 1)
|ck(ω)|

≤
(
π

2δ
+

1

2

) N−1∑
k=Nδ+1

1

k(k + 1)

<

(
π

2δ
+

1

2

) ∞∑
k=Nδ+1

1

k2

<

(
π

2δ
+

1

2

)∫ ∞
Nδ

1

x2
dx

=

(
π

2δ
+

1

2

)
1

Nδ
,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 15

where we used (40) in the second inequality. Since δ ≤ 1/2
and Nδ > 1/δ − 1, we have(

π

2δ
+

1

2

)
1

Nδ
<

π

2(1− δ)
+

1

2Nδ
≤ π +

1

2
,

and consequently∣∣∣∣∣
N−1∑

k=Nδ+1

1

k(k + 1)
ck(ω)

∣∣∣∣∣ < π +
1

2
(43)

for all ω ∈ [δ, π]. Combining (37), (38), (39), (41), (42), and
(43), we see that for N > 1/δ and all ω ∈ [δ, π], we have

|FN (ω)| < 1 + log

(
1

δ

)
+ 2

(
π

2
+

1

4

)
+ π +

1

2

= log

(
1

δ

)
+ 2 + 2π.

APPENDIX D
COMPUTABILITY OF ‖gN‖p

Let N ∈ N be arbitrary but fixed. Next, we will show that
the norm ‖gN‖p is computable. Let

gMN (t) =

{
gN (t), |t| ≤M,

0, |t| > M.

It can be shown that gMN is a computable function on [−M,M]
and that

‖gMN ‖p =

(∫ M

−M
|gMN (t)|p dt

) 1
p

is computable [9, p. 35, Theorem 5]. We have∣∣‖gN‖p − ‖gMN ‖p∣∣ ≤ ‖gN − gMN ‖p
=

(∫
|t|>M

|gN (t)|p dt

) 1
p

≤
N∑
k=1

1

kπ2

(∫
|t|>M

1

|t− k|2p

) 1
p

.

We treat the integral on the right hand side of the inequality
next. For M > N and 1 ≤ k ≤ N , we obtain∫
|t|>M

1

|t− k|2p
dt =

∫ −M
−∞

1

|t− k|2p
dt+

∫ ∞
M

1

|t− k|2p
dt.

For the first integral we have∫ −M
−∞

1

|t− k|2p
dt <

∫ −M
−∞

1

|t|2p
dt

=
1

M2p−1(2p− 1)
,

and for the second integral∫ ∞
M

1

|t− k|2p
dt <

∫ ∞
M

1

|t−N |2p
dt

=
1

(M −N)2p−1(2p− 1)
.

Hence, it follows that∣∣‖gN‖p − ‖gMN ‖p∣∣
<

N∑
k=1

1

kπ2

(
1

M2p−1(2p− 1)
+

1

(M −N)2p−1(2p− 1)

) 1
p

,

which shows that the computable sequence of computable
numbers {‖gMN ‖p}M∈N converges effectively to ‖gN‖p.
Hence, ‖gN‖p is computable.

ACKNOWLEDGMENT

The results of this work have been presented in part at
the “Center for Advancing Electronics Dresden” (cfaed), the
“Berlin International Graduate School in Model and Simula-
tion based Research” (BIMoS), and the special program for
analog computing of the Leibniz Institute for High Perfor-
mance Microelectronics–IHP in Frankfurt. Further thanks are
due to Gerhard Fettweis, Martin Grötschel, Rolf Kraemer, and
Volker Mehrmann for discussions about the results of this work
and interesting related problems.

REFERENCES

[1] H. Boche and U. J. Mönich, “Turing computability of the Fourier
transform of bandlimited functions,” in Proceedings of the 2019 IEEE
International Symposium on Information Theory, Jul. 2019, pp. 380–
384.

[2] J. B. Allen, “Short term spectral analysis, synthesis, and modification
by discrete Fourier transform,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 25, no. 3, pp. 235–238, Jun. 1977.

[3] F. J. Harris, “On the use of windows for harmonic analysis with the
discrete Fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp.
51–83, Jan. 1978.

[4] M. D. Sacchi, T. J. Ulrych, and C. J. Walker, “Interpolation and
extrapolation using a high-resolution discrete Fourier transform,” IEEE
Transactions on Signal Processing, vol. 46, no. 1, pp. 31–38, Jan. 1998.

[5] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
3rd ed. Prentice Hall, 2009.

[6] R. I. Becker and N. Morrison, “The errors in FFT estimation of the
Fourier transform,” IEEE Transactions on Signal Processing, vol. 44,
no. 8, pp. 2073–2077, Aug. 1996.

[7] A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” Proceedings of the London Mathematical Soci-
ety, vol. s2-42, no. 1, pp. 230–265, Nov. 1936.

[8] ——, “On computable numbers, with an application to the Entschei-
dungsproblem. A correction,” Proceedings of the London Mathematical
Society, vol. s2-43, no. 1, pp. 544–546, Jan. 1937.

[9] M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics.
Springer-Verlag, 1989.

[10] K. Weihrauch, Computable Analysis: An Introduction. Springer-Verlag,
2000.

[11] D. Kunkle, “Type-2 computability on spaces of integrable functions,”
Mathematical Logic Quarterly, vol. 50, no. 4-5, pp. 417–430, Aug. 2004.

[12] M. B. Pour-El and I. Richards, “Computability and noncomputability in
classical analysis,” Transactions of the American Mathematical Society,
vol. 275, no. 2, pp. 539–560, Feb. 1983.

[13] A. Zygmund, Trigonometric Series, 3rd ed. Cambridge University
Press, 2002, vol. I and II.

[14] P. Moser, “On the convergence of Fourier series of computable Lebesgue
integrable functions,” Electronic Notes in Theoretical Computer Science,
vol. 202, pp. 13–18, Mar. 2008.

[15] H. Boche and U. J. Mönich, “Analytic properties of downsampling
for bandlimited signals,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP ’19),
May 2019, pp. 5008–5012.

[16] ——, “On the Fourier representation of computable continuous signals,”
in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’19), May 2019, pp. 5013–
5017.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 16

[17] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis –
Foundations. Oxford University Press, 1996.

[18] G. S. Boolos, J. P. Burgess, and R. C. Jeffrey, Computability and Logic.
Cambridge University Press, 2002.

[19] J. Avigad and V. Brattka, “Computability and analysis: the legacy of
Alan Turing,” in Turing’s Legacy: Developments from Turing’s Ideas in
Logic, R. Downey, Ed. Cambridge University Press, 2014.

[20] R. I. Soare, Recursively Enumerable Sets and Degrees, ser. Perspectives
in Mathematical Logic. Springer-Verlag Berlin Heidelberg, 1987.

[21] E. Specker, “Nicht konstruktiv beweisbare Sätze der Analysis,” The
Journal of Symbolic Logic, vol. 14, no. 3, pp. 145–158, Sep. 1949.

[22] T. Rado, “On non-computable functions,” Bell System Technical Journal,
vol. 41, no. 3, pp. 877–884, May 1962.

[23] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. McGraw-Hill,
1996.

[24] A. J. Macfaden, G. S. D. Gordon, and T. D. Wilkinson, “An optical
Fourier transform coprocessor with direct phase determination,” Scien-
tific Reports, vol. 7, no. 1, p. 13667, 2017.

[25] W. Maass, “On the computational complexity of networks of spiking
neurons,” in Advances in Neural Information Processing Systems, vol. 7,
1995, pp. 183–190.

[26] ——, “Lower bounds for the computational power of networks of
spiking neurons,” Neural Computation, vol. 8, no. 1, pp. 1–40, Jan.
1996.

[27] P. W. K. Rothemund, “A DNA and restriction enzyme implementation of
Turing Machines,” in DNA based computers. DIMACS series in discrete
mathematics and theoretical computer science, vol. 27, Apr. 1995, pp.
75–119.

[28] A. Currin, K. Korovin, M. Ababi, K. Roper, D. B. Kell, P. J. Day,
and R. D. King, “Computing exponentially faster: implementing a non-
deterministic universal Turing machine using DNA,” Journal of the
Royal Society Interface, vol. 14, no. 128, p. 20160990, Mar 2017.

[29] A. Hjelmfelt, E. D. Weinberger, and J. Ross, “Chemical implementation
of neural networks and Turing machines,” Proceedings of the National
Academy of Sciences, vol. 88, no. 24, pp. 10 983–10 987, Dec. 1991.

[30] ——, “Chemical implementation of finite-state machines,” Proceedings
of the National Academy of Sciences, vol. 89, no. 1, pp. 383–387, Jan.
1992.

[31] M. O. Magnasco, “Chemical kinetics is Turing universal,” Physical
Review Letters, vol. 78, no. 6, p. 1190, Feb. 1997.

[32] A. Zygmund, Trigonometric Series, 3rd ed. Cambridge University
Press, 2002, vol. I.

[33] B. Y. Levin, Lectures on Entire Functions. AMS, 1996.
[34] V. K. Madisetti and D. B. Williams, Digital Signal Processing Hand-

book. CRC Press, 1999.
[35] B. Boulet, Fundamentals of Signals and Systems, 1st ed. Boston,

Massachusetts: Charles River Media, 2006.
[36] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-

division multiplexing using the discrete Fourier transform,” IEEE Trans-
actions on Communication Technology, vol. 19, no. 5, pp. 628–634, Oct.
1971.

[37] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of Computation, vol. 19, no. 90,
pp. 297–301, Apr. 1965.

[38] Z. Wang, “Fast algorithms for the discrete W transform and for the
discrete Fourier transform,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 32, no. 4, pp. 803–816, Aug. 1984.

[39] H. V. Sorensen, D. L. Jones, M. T. Heideman, and C. S. Burrus,
“Real-valued fast Fourier transform algorithms,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 35, no. 6, pp. 849–863,
Jun. 1987.

[40] D. J. Young and N. C. Beaulieu, “The generation of correlated Rayleigh
random variates by inverse discrete Fourier transform,” IEEE Transac-
tions on Communications, vol. 48, no. 7, pp. 1114–1127, Jul. 2000.

[41] C.-H. Chang, C.-L. Wang, and Y.-T. Chang, “Efficient VLSI architec-
tures for fast computation of the discrete Fourier transform and its
inverse,” IEEE Transactions on Signal Processing, vol. 48, no. 11, pp.
3206–3216, Nov. 2000.

[42] P. Butzer, P. Ferreira, J. Higgins, G. Schmeisser, and R. Stens, “The sam-
pling theorem, poisson’s summation formula, general parseval formula,
reproducing kernel formula and the paley-wiener theorem for bandlim-
ited signals - their interconnections,” Applicable Analysis, vol. 90, no.
3–4, pp. 431–461, 2011.

[43] M. G. Beaty and J. R. Higgins, “Aliasing and Poisson summation in the
sampling theory of Paley-Wiener spaces,” Journal of Fourier Analysis
and Applications, vol. 1, no. 1, pp. 67–85, 1994.

[44] S. K. Pichorides, “On the best values of the constants in the theorem
of M. Riesz, Zygmund and Kolmogorov,” Studia Mathematica, vol. 44,
no. 2, pp. 165–179, 1972.

Holger Boche (M’04–SM’07–F’11) received the
Dipl.-Ing. and Dr.-Ing. degrees in electrical engi-
neering from the Technische Universität Dresden,
Dresden, Germany, in 1990 and 1994, respectively.
He graduated in mathematics from the Technische
Universität Dresden in 1992. From 1994 to 1997,
he did Postgraduate studies in mathematics at the
Friedrich-Schiller Universität Jena, Jena, Germany.
He received his Dr. rer. nat. degree in pure math-
ematics from the Technische Universität Berlin,
Berlin, Germany, in 1998. In 1997, he joined the

Heinrich-Hertz-Institut (HHI) für Nachrichtentechnik Berlin, Berlin, Germany.
Starting in 2002, he was a Full Professor for mobile communication networks
with the Institute for Communications Systems, Technische Universität Berlin.
In 2003, he became Director of the Fraunhofer German-Sino Lab for Mobile
Communications, Berlin, Germany, and in 2004 he became the Director of
the Fraunhofer Institute for Telecommunications (HHI), Berlin, Germany.
Since October 2010 he has been with the Institute of Theoretical Information
Technology and Full Professor at the Technische Universität München,
Munich, Germany. Since 2014 he has been a member and honorary fellow
of the TUM Institute for Advanced Study, Munich, Germany, and since
2018 a founding director of the Center for Quantum Engineering (ZQE) at
the Technische Universität München, Munich, Germany. He was a Visiting
Professor with the ETH Zurich, Zurich, Switzerland, during the 2004 and
2006 Winter terms, and with KTH Stockholm, Stockholm, Sweden, during
the 2005 Summer term. Prof. Boche is a Member of IEEE Signal Processing
Society SPCOM and SPTM Technical Committee. He was elected a Member
of the German Academy of Sciences (Leopoldina) in 2008 and of the Berlin
Brandenburg Academy of Sciences and Humanities in 2009. He received
the Research Award “Technische Kommunikation” from the Alcatel SEL
Foundation in October 2003, the “Innovation Award” from the Vodafone
Foundation in June 2006, and the Gottfried Wilhelm Leibniz Prize from the
Deutsche Forschungsgemeinschaft (German Research Foundation) in 2008.
He was co-recipient of the 2006 IEEE Signal Processing Society Best Paper
Award and recipient of the 2007 IEEE Signal Processing Society Best Paper
Award. He was the General Chair of the Symposium on Information Theoretic
Approaches to Security and Privacy at IEEE GlobalSIP 2016. Among his
publications is the recent book Information Theoretic Security and Privacy of
Information Systems (Cambridge University Press).

Ullrich J. Mönich (S’06–M’12–SM’16) received
the Dipl.-Ing. degree in electrical engineering from
the Technische Universität Berlin, Berlin, Germany,
in 2005 and the Dr.-Ing. degree from the Technische
Universität München, Munich, Germany, in 2011.
During the winter term of 2003, he was a Visiting
Researcher with the University of California, Santa
Barbara. From 2005 to 2010 he was Research and
Teaching Assistant with the Technische Universität
Berlin and from 2010 to 2012 with the Technische
Universität München. From 2012 to 2015 he was a

Postdoctoral Fellow at the Massachusetts Institute of Technology. Since 2015
he has been a Senior Researcher and Lecturer with the Technische Universität
München, and since 2019 he has led the research activities in the Advanced
Communication Systems and Embedded Security Lab (ACES Lab) at the
Chair of Theoretical Information Technology. His research activities com-
prise signal and sampling theory, mobile communications, security, applied
functional and harmonic analysis, and forensic DNA signal analysis. He was
recipient of the Rohde & Schwarz Award for his dissertation in 2012.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.2964204

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

